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SATZ - An Adaptive Sentence Segmentation System
David D. Palmer

Abstract

The segmentation of a text into sentences is a necessary prerequisite for
many natural language processing tasks, including part-of-speech tagging
and sentence alignment. This is a non-trivial task, however, since end-of-
sentence punctuation marks are ambiguous. A period, for example, can
denote a decimal point, an abbreviation, the end of a sentence, or even an
abbreviation at the end of a sentence. To disambiguate punctuation marks
most systems use brittle, special-purpose regular expression grammars and
exception rules. Such approaches are usually limited to the text genre for
which they were developed and cannot be easily adapted to new text types.
They can also not be easily adapted to other natural languages.

As an alternative, I present an e�cient, trainable algorithm that can
be easily adapted to new text genres and some range of natural languages.
The algorithm uses a lexicon with part-of-speech probabilities and a feed-
forward neural network for rapid training. The method described requires
minimal storage overhead and a very small amount of training data. The
algorithm overcomes the limitations of existing methods and produces a very
high accuracy.

The results presented demonstrate the successful implementation of the
algorithm on a 27,294 sentence English corpus. Training time was less than
one minute on a workstation and the method correctly labeled over 98.5% of
the sentence boundaries. The method was also successful in labeling texts
containing no capital letters. The system has been successfully adapted to
German and French. The training times were similarly low and the resulting
accuracy exceeded 99%.
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1 Introduction

1.1 The Problem

The sentence is an important unit in many natural language processing
tasks.1 For example, the alignment of sentences in parallel multi-lingual cor-
pora requires �rst that the individual sentence boundaries be clearly labeled
(Gale and Church, 1993), (Kay and R�oscheinsen, 1993). Most part-of-speech
taggers also require the disambiguation of sentence boundaries2 in the in-
put text (Church, 1988),(Cutting et al., 1991). This is usually accomplished
by inserting a unique character sequence at the end of each sentence, such
that the NLP tools analyzing the text can easily recognize the individual
sentences.

Segmenting a text into sentences is a non-trivial task, however, since all
end-of-sentence punctuation marks3 are ambiguous. A period, for example,
can denote a decimal point, an abbreviation, the end of a sentence, or even an
abbreviation at the end of a sentence. An exclamation point and a question
mark can occur within quotation marks or parentheses, as well as at the end
of a sentence. The ambiguity of these punctuation marks is illustrated in the
following di�cult cases:

(1) The group included Dr. J.M. Freeman and T. Boone Pickens Jr.

(2) \This issue crosses party lines and crosses philosophical lines!" said
Rep. John Rowland (R., Conn.).

The existence of punctuation in grammatical subsentences suggests the
possibility of a further decomposition of the sentence boundary problem into
types of sentence boundaries, one of which would be \embedded sentence

1Much of the work contained in this report has been reported in a similar form in
(Palmer and Hearst, 1994) and portions of this work were done in collaboration with
Marti Hearst of Xerox PARC.

2The terms sentence segmentation, sentence boundary disambiguation and sentence

boundary labeling are interchangeable.
3In this report, I will consider only the period, the exclamation point and the question

mark to be possible \end-of-sentence punctuation marks", and all references to \punctua-
tion marks" will refer to these three. Although the colon, the semicolon, and conceivably
the comma can also delimit grammatical sentences, their usage is beyond the scope of this
work.
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boundary." Such a distinction might be useful for certain applications which
analyze the grammatical structure of the sentence. However, in this work
I will address the less-speci�c problem of determining sentence boundaries
between sentences.

In examples (1) and (2), the word immediately preceding and the word
immediately following a punctuation mark provide important information
about its role in the sentence. However, more context may be necessary,
such as when punctuation occurs in a subsentence within quotation marks
or parentheses, as seen in example (2), or when an abbreviation appears at
the end of a sentence, as seen in (3a-b):

(3a) It was due Friday by 5 p.m. Saturday would be too late.

(3b) She has an appointment at 5 p.m. Saturday to get her car �xed.

Section 4.2.1 contains a discussion of methods of representing context.

1.2 Baseline

When evaluating a sentence segmentation algorithm, comparison with the
baseline algorithm is an important measure of the success of the algorithm.
A baseline algorithm in this case is simply a very naive algorithm which
would label each punctuation mark as a sentence boundary. Such a baseline
algorithm would have an accuracy equal to the lower bound of the text, the
percentage of possible sentence-ending punctuation marks in the text which
indeed denote sentence boundaries. A good sentence segmentation algorithm
will thus have an accuracy much greater than the lower bound.

Since the use of abbreviations in a text depends on the particular text and
text genre, the number of ambiguous punctuation marks, and therefore the
performance of the baseline algorithm, will vary dramatically depending on
text genre, and even within a single text genre. For example, Liberman and
Church (1992) report that the Wall Street Journal corpus contains 14,153
periods per million tokens, whereas, in the Tagged Brown corpus (Francis
and Kucera, 1982), the �gure is only 10,910 periods per million tokens. They
also report that 47% of the periods in the WSJ corpus denote abbreviations
(lower bound 53%), compared to only 10% in the Brown corpus (lower bound
90%)(Riley, 1989). In contrast, M�uller (1980) reports lower bound statistics
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ranging from 54.7% to 92.8% within the same corpus of scienti�c abstracts.
Such a range of lower bound �gures might suggest the need for a robust
approach that can adapt rapidly to di�erent text requirements.

2 Previous Approaches

Although sentence boundary disambiguation is an essential preprocessing
step of many natural language processing systems, it is a topic rarely ad-
dressed in the literature. Consequently, there are few published references.
There are also few public domain systems for performing the segmentation
task, and most current systems are speci�cally tailored to the particular cor-
pus analyzed and are not designed for general use.

2.1 Regular Expressions and Heuristic Rules

The method currently widely used for determining sentence boundaries is
a regular grammar, usually with limited lookahead. In the simplest imple-
mentation of this method, the grammar rules attempt to �nd patterns of
characters, such as \period-space-capital letter" which usually occur at the
end of a sentence. More robust implementations consider the entire word
preceding and following the punctuation mark and include extensive word
lists and exception lists to attempt to recognize abbreviations and proper
nouns. There are several examples of rule-based and heuristic systems for
which performance numbers are available.

Christiane Ho�mann(1994) used a regular expression approach to clas-
sify punctuation marks in a corpus of the German newspaper die tageszeitung
with a lower bound of 92%. She used the UNIX tool lex (Lesk and Schmidt,
1975) and a large abbreviation list to classify occurrences of periods accord-
ing to their likely function in the text. Tested on 2827 periods from the
corpus, her method correctly classi�ed over 98% of the sentence boundaries.
The method was developed speci�cally for the tageszeitung corpus, and Ho�-
mann reports that success in applying her method to other corpora would
be dependent on the quality of the available abbreviation lists.

Gabriele Schicht4, over the course of four months, developed a method for
segmenting sentences in a corpus of the German newspaper die S�uddeutsche

4At the University of Munich, Germany.
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Zeitung. The method uses a program written in the text manipulation lan-
guage perl (Wall and Schwartz, 1991) to analyze a context consisting of the
word immediately preceding and the word immediately following each punc-
tuation mark. In the case of a period following a number the method consid-
ers more context, one word before the number and one word after the period.
More context is also considered when attempting to recognize abbreviations
containing several blank spaces, such as \v. i. S. d. P." (verantwortlich
im Sinne des Presserechts). Using a Next workstation, the method requires
30 minutes to classify 15,000-20,000 cases, as each word (in the limited con-
text) must be looked up in a 500,000 word lexicon. Schicht reports over 99%
accuracy using the method.5

Mark Wasson and colleagues6 invested 9 sta� months developing a sys-
tem that recognizes special tokens (e.g., non-dictionary terms such as proper
names, legal statute citations, etc.) as well as sentence boundaries. From
this, Wasson built a stand-alone boundary recognizer in the form of a gram-
mar converted into �nite automata with 1419 states and 18002 transitions
(excluding the lexicon). The resulting system, when tested on 20 megabytes
of news and case law text achieved an accuracy of 99.7% at speeds of 80,000
characters per CPU second on a mainframe computer. When tested against
upper-case legal text the algorithm still performed very well, achieving ac-
curacies of 99.71% and 98.24% on test data of 5305 and 9396 periods, re-
spectively. It is not likely, however, that the results would be this strong on
lower-case data.7

Although the regular grammar approach can be successful, it requires
a large manual e�ort to compile the individual rules used to recognize the
sentence boundaries. Such e�orts are usually developed speci�cally for a text
corpus (Liberman and Church, 1992), (Ho�mann, 1994), and would probably
not be portable to other text genres. Because of their reliance on special
language-speci�c word lists, they are not portable to other natural languages
without repeating the e�ort of compiling extensive lists and rewriting rules.
In addition, heuristic approaches depend on having a well-behaved corpus
with regular punctuation and few extraneous characters, and they would

5All information about this system is courtesy of a personal communication with
Gabriele Schicht.

6At Mead Data Central.
7All information about Mead's system is courtesy of a personal communication between

Marti Hearst and Mark Wasson.
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probably not be very successful with texts obtained via optical character
recognition (OCR).

2.2 Regression Trees

Riley (1989) describes an approach that uses regression trees (Breiman et al.,
1984) to classify sentence boundaries according to the following features:

Probability[word preceding \." occurs at end of sentence]

Probability[word following \." occurs at beginning of sentence]

Length of word preceding \."

Length of word after \."

Case of word preceding \.": Upper, Lower, Cap, Numbers

Case of word following \.": Upper, Lower Cap, Numbers

Punctuation after \." (if any)

Abbreviation class of words with \."

The method uses information about one word of context on either side of
the punctuation mark and thus must record, for every word in the lexicon,
the probability that it occurs next to a sentence boundary. Probabilities were
compiled from 25 million words of pre-labeled training data from a corpus
of AP newswire. The results were tested on the Brown corpus achieving an
accuracy of 99.8%.8

2.3 Word endings and word lists

M�uller (1980) provides an exhaustive analysis of sentence boundary disam-
biguation as it relates to lexical endings and the identi�cation of abbrevia-
tions and words surrounding a punctuation mark, focusing on text written
in English. This approach makes multiple passes through the data to �nd

8Time for training was not reported, nor was the amount of the Brown corpus against
which testing was performed; it is assumed the entire Brown corpus was used.
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recognizable su�xes and thereby �lters out words which aren't likely to be
abbreviations. The morphological analysis makes it possible to identify words
which are not otherwise present in the extensive word lists used to identify
abbreviations. Accuracy rates of 95-98% are reported for this method tested
on over 75,000 scienti�c abstracts, with a lower bound ranging from 54.7%
to 92.8%.

2.4 Feed-forward Neural Network

Humphrey and Zhou (1989) report using a feed-forward neural network to
disambiguate periods, and achieve an accuracy averaging 93%. They use a
regular grammar to tokenize the text before training the neural nets, but no
further details of their approach are available.9.

3 System Desiderata

Each of the approaches described above has disadvantages to overcome. A
successful sentence-boundary disambiguation algorithm should have the fol-
lowing characteristics:

� The approach should be robust, and should not require a hand-built
grammar or specialized rules that depend heavily on capitalization,
multiple spaces between sentences, etc. Thus, the approach should
adapt easily to new text genres and some new languages.

� The approach should train quickly on a small training set and should
not require excessive storage overhead.

� The approach's results should be very accurate and it should be e�cient
enough that it does not noticeably slow down text preprocessing.

� The approach should be able to specify \no opinion" on cases that
are too di�cult to disambiguate, rather than making under-informed
guesses.

9Accuracy results were obtained courtesy of a personal communication between Marti
Hearst and Joe Zhou.
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In the following sections I present an approach that meets each of these
criteria, produces a very low error rate, and behaves more robustly than
solutions that require manually designed rules.

4 The SATZ System

This section describes the structure of my adaptive sentence segmentation
system, known as SATZ10. My approach in the SATZ system is to repre-
sent the context surrounding a punctuation mark as a series of vectors of
probabilities. The probabilities used for each word in the context are the
prior part-of-speech probabilities obtained from a lexicon containing part-of-
speech frequency data. The context vectors, or \descriptor arrays," are used
as input to a neural network trained to disambiguate sentence boundaries.
The output of the neural network is then used to determine the role of the
punctuation mark in the sentence. The architecture of the system is shown
in Figure 1, and the following sections describe the individual stages in the
process.

4.1 Tokenizer

The �rst stage of the process is lexical analysis, which breaks the input text (a
stream of characters) into tokens. The SATZ tokenizer is implemented using
the UNIX tool lex (Lesk and Schmidt, 1975) and is a slightly-modi�ed version
of the tokenizer from the PARTS part-of-speech tagger (Church, 1988). The
tokens returned by the lex program can be a sequence of alphabetic characters
(i.e. words), a sequence of digits11, or a single non-alphanumeric character
such as a period or quotation mark.

4.2 Part-of-speech Lookup

4.2.1 Representing Context

The context surrounding a punctuation mark can be represented in various
ways. The simplest and most straightforward is to use the individual words

10\Satz" is the German word for \sentence."
11Numbers containing periods acting as decimal points are considered a single token.

This eliminates one possible ambiguity of the period at the lexical analysis stage.
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Input Text

Text with sentence boundaries disambiguated

Tokenization

Part−of−speech Lookup

Classification by neural network

Descriptor array construction

Figure 1: SATZ Architecture

preceding and following the punctuation mark, as in this example using three
words of context on either side of the punctuation mark:

at the plant. He had thought

For each word in the language, we would then determine how likely it is
to come at the end or beginning of a sentence. However, compiling these
�gures for each word in a language is very time-consuming and requires large
amounts of storage, and it is unlikely that such information will be useful to
later stages of processing.

As an alternative, the context could be approximated by using a single
part-of-speech for each word. The above context would then be represented
by the following part-of-speech sequence:

8



preposition article noun

pronoun verb verb

Requiring a single part-of-speech for each word presents a processing cir-
cularity: because most part-of-speech taggers require predetermined sentence
boundaries, sentence labeling must be done before tagging. But if sentence
labeling is done before tagging, no part-of-speech assignments are available
for the boundary-determination algorithm.

To avoid this processing circularity and avoid the need for a single part-of-
speech for each word, the context can be further approximated by the prior
probabilities of all parts-of-speech for that word. Each word in the context
would thus be represented by a series of possible parts-of-speech, as well as
the probability that the word occurs as each part-of-speech. Continuing the
example, the context becomes:

preposition(1.0) article(1.0) noun(0.8)/verb(0.2)

pronoun(1.0) verb(1.0) noun(0.1)/verb(0.9)

This denotes that \at" and \the" have a 1.0 probability of occurring as a
preposition and article respectively, \plant" has a 0.8 probability of occurring
as a noun and a 0.2 probability of occurring as a verb, and so on. These
probabilities are based on occurrences of the words in a pre-tagged corpus,
and are therefore corpus dependent. Such part-of-speech information is often
used by a part-of-speech tagger and would thus be readily available and
would not require excessive storage overhead. For these reasons I chose to
approximate the context in my system by using the prior part-of-speech
probabilities.

4.2.2 The Lexicon

An important component of the SATZ system is the lexicon containing part-
of-speech frequency data from which the probabilities are calculated. Words
in the lexicon are followed by a series of part-of-speech tags and associated
frequencies, representing the possible parts-of-speech for that word and the
frequency with which the word occurs as each part-of-speech. The lexical
lookup stage of the SATZ system �nds a word in the lexicon (if it is present)

9



and returns the possible parts-of-speech. For the English word \well," for
example, the lookup module might return the tags

JJ/15 NN/18 QL/68 RB/634 UH/22 VB/5

indicating that, in the corpus on which the lexicon is based12, the word \well"
occurred 15 times as an adjective, 18 as a singular noun, 68 as a quali�er,
634 as an adverb, 22 as an interjection, and 5 as a singular verb.

4.2.3 Heuristics for Unknown Words

If a word is not present in the lexicon, the system contains a set of heuristics
which attempt to assign the most reasonable parts-of-speech to the word. A
summary of these heuristics follows.

� Unknown tokens containing a digit (0-9) are assumed to be numbers.

� Any token beginning with a period, exclamation point, or question
mark is assigned a \possible end-of-sentence punctuation" tag. This
catches common sequences like \?!"

� Common morphological endings are recognized and the appropriate
part-of-speech is assigned to the entire word.

� Words containing a hyphen are assigned a series of tags and frequencies
denoting \unknown hyphenated word."

� Words containing an internal period are assumed to be abbreviations.

� Capitalized words are not always proper nouns, even when it appears
somewhere other than in a sentence's initial position (e.g., the word
\American" is often used as an adjective). Those words not present in
the lexicon are assigned a certain probability (0.9 for English) of being
a proper noun.

12In this example, the frequencies are derived from the Brown corpus (Francis and
Kucera, 1982).
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� Capitalized words appearing in the lexicon but not registered as proper
nouns can nevertheless still be proper nouns. In addition to the part-
of-speech frequencies present in the lexicon, these words are assigned a
certain probability of being a proper noun (0.5 for English).

� As a last resort, the word is assigned a series of possible tags with a
uniform frequency distribution.

These heuristics can be easily modi�ed and adapted to the speci�c needs
of a new language. For example, the probability of a capitalized word being
a proper noun is higher in English than in German, where all nouns are also
capitalized.

4.3 Descriptor Array Construction

For each token in the input text, we need to construct a vector of probabilities
to numerically describe the token. This vector is known as a descriptor array.
The lexicon may contain as many as 70 or 80 very speci�c parts-of-speech,
which we �rst need to map into more general categories. For example, the
tags for present tense verb, past participle, and modal verb all map into the
more general \verb" category. The parts-of-speech returned by the lookup
module are thus mapped into the 18 general categories given in Figure 2, and
the frequencies for each category are summed. The 18 category frequencies
for the word are then converted to probabilities by dividing the frequencies
for each. In addition to these 18 probabilities, the descriptor array also
contains two additional ags that indicate if the word begins with a capital
letter and if it follows a punctuation mark, for a total of 20 items in each
descriptor array.

4.4 Classi�cation by Neural Network

The descriptor arrays representing the tokens in the context are used as the
input to a fully-connected feed-forward neural network, shown in Figure 3.

4.4.1 Network architecture

The network accepts as input k � 20 input units, where k is the number of
words of context surrounding an instance of an end-of-sentence punctuation

11



noun verb
article modi�er
conjunction pronoun
preposition proper noun
number comma or semicolon
left parentheses right parentheses
non-punctuation character possessive
colon or dash abbreviation
sentence-ending punctuation others

Figure 2: Elements of the descriptor array assigned to each incoming token.

mark (referred to in this report as \k-context"), and 20 is the number of
elements in the descriptor array described in Section 4.3. The input layer is
fully connected to a hidden layer consisting of j hidden units with a sigmoidal
squashing activation function. The hidden units in turn feed into one output
unit which indicates the results of the function.13

The output of the network, a single value between 0 and 1, represents the
strength of the evidence that a punctuation mark occurring in its context is
indeed the end of the sentence. I de�ne two adjustable sensitivity thresholds,
t0 and t1, which are used to classify the results of the disambiguation. If the
output is less than t0, the punctuation mark is not a sentence boundary; if the
output is greater than or equal to t1, it is a sentence boundary. Outputs which
fall between the thresholds cannot be disambiguated by the network and are
marked accordingly, so they can be treated specially in later processing.
When t0 = t1, no punctuation mark is left ambiguous. Section 5.4 describes
experiments which vary the sensitivity thresholds.

To disambiguate a punctuation mark in a k-context, a window of k + 1
tokens and their descriptor arrays is maintained as the input text is read.
The �rst k=2 and �nal k=2 tokens of this sequence represent the context in
which the middle token appears. If the middle token is a potential end-of-
sentence punctuation mark, the descriptor arrays for the context tokens are

13This network can be thought of roughly as a Time-Delay Neural Network (TDNN)
(Hertz et al., 1991), since it accepts a sequence of inputs and is sensitive to positional
information within the sequence. However, since the input information is not really shifted
with each time step, but rather only presented to the neural net when a punctuation mark
is in the center of the input stream, this is not technically a TDNN.
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Input Layer

Hidden Layer

Output Layer

20 2020 20

DA DADA DA

Output value  (0 < x < 1)

Figure 3: Neural Network Architecture (DA = descriptor array of 20 items)

input to the network and the output result indicates the appropriate label,
subject to the thresholds t0 and t1.

4.4.2 Training

Training data consist of two texts in which all boundaries are already la-
beled. The �rst text, the training text, contains between 250 and 500 test
cases, where a test case is an ambiguous punctuation mark. The weights of
the neural network are trained on the training text using the standard back-
propagation algorithm (Hertz et al., 1991). The second text used in training
is the cross-validation text (Bourland and Morgan, 1994) and contains be-
tween 125 and 250 test cases separate from the training text. Training of
the weights is not performed on this text; the cross-validation text is instead
used to increase the generalization of the training, such that when the total
training error over the cross-validation text reaches a minimum, training is
halted. Testing is then performed on texts independent of the training and
cross-validation texts. All training times reported in this report were ob-
tained on a Hewlett Packard 9000/750 Workstation, unless otherwise noted.
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4.5 Implementation

I implemented the SATZ system as a series of C modules and UNIX shell
scripts. The software is available via anonymous ftp to cs-tr.CS.Berkeley.EDU
in the directory pub/cstr/ as the compressed tar �le satz.tar.Z. Appendix A
contains the README �le I wrote to explain the structure of the software
and to assist users in adapting it for their own purposes.

5 Experiments and Results (English)

I tested the SATZ system for the English language using texts from the Wall
Street Journal portion of the ACL/DCI collection (Church and Liberman,
1991). I �rst constructed a training text14 of 573 test cases and a cross-
validation text of 258 test cases from the WSJ corpus. I then constructed
a separate test text consisting of 27,294 test cases, with a lower bound of
75.0%. The lexicon and thus the frequency counts used to calculate the
descriptor arrays were taken from the PARTS tagger (Church, 1988), which
derived the counts from the Brown corpus (Francis and Kucera, 1982).

5.1 Context Size

In order to determine how much context is necessary to accurately segment
sentences in a text, I varied the size of the context and obtained the re-
sults in table 1. The Training Error is the least mean squares (Hertz et al.,
1991) error15 (one-half the sum of the squares of all the errors) for all 573
items in the training set. The Cross Error is the equivalent value for the
cross-validation set. These two error �gures give an indication of how well
the network learned the training data before stopping. From these data I
concluded that a 6-token context, 3 preceding the punctuation mark and 3
following, produces the best results.

14Note that \constructing" a training, cross-validation, or test text simply involves
manually inserting a unique character sequence at the end of each sentence.

15The error of a particular item is the di�erence between the desired output and the
actual output of the neural net.
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Context Training Training Cross Testing Testing
Size Epochs Error Error Errors Error (%)

4-context 1731 1.52 2.36 1424 5.22%
6-context 218 0.75 2.01 409 1.50%
8-context 831 0.043 1.88 877 3.21%

Table 1: Results of comparing context sizes.

# Hidden Training Training Cross Testing Testing
Units Epochs Error Error Errors Error (%)

1 623 1.05 1.61 721 2.64%
2 216 1.08 2.18 409 1.50%
3 239 0.39 2.27 435 1.59%
4 350 0.27 1.42 1343 4.92%

Table 2: Results of comparing hidden layer sizes (6-context).

5.2 Hidden Units

To determine the size of the hidden layer in the neural network which pro-
duced the highest output accuracy, I experimented with various hidden layer
sizes and obtained the results in table 2. From these data I concluded that
the best accuracy in this case is possible using a neural network with two
nodes in its hidden layer.

5.3 Sources of Errors

As described in Sections 5.1 and 5.2, the best results were obtained with a
context size of 6 tokens and a hidden layer with 2 units. This con�guration
produced a total of 409 errors out of 27,294 test cases, for an accuracy of
98.5%. These errors fall into two major categories: (i)\false positive", i.e., a
punctuation mark the method erroneously labeled as a sentence boundary,
and (ii) \false negative", i.e., an actual sentence boundary which the method
did not label as such. Table 3 contains a summary of these errors.

These errors can be decomposed into the following groups:

37.6% false positive at an abbreviation within a title or name, usually
because the word following the period exists in the lexicon with

15



224 (54.8%) false positives
185 (45.2%) false negatives
409 total errors out of 27,294 items

Table 3: Results of testing on 27,294 mixed-case items; t0 = t1 = 0:5, 6-
context, 2 hidden units.

other parts-of-speech (Mr. Gray, Col. North, Mr. Major, Dr.

Carpenter, Mr. Sharp).
22.5% false negative due to an abbreviation at the end of a sentence,

most frequently Inc., Co., Corp., or U.S., which all occur within
sentences as well.

11.0% false positive or negative due to a sequence of characters including
a period and quotation marks, as this sequence can occur both
within and at the end of sentences.

9.2% false negative resulting from an abbreviation followed by quotation
marks; related to the previous two types.

9.8% false positive or false negative resulting from presence of ellipsis
(...), which can occur at the end of or within a sentence.

9.9% miscellaneous errors, including extraneous characters (dashes, as-
terisks, etc.), ungrammatical sentences, misspellings, and paren-
thetical sentences.

The �rst two items indicate that the system is having di�culty recogniz-
ing the function of abbreviations. I attempted to counter this by dividing
the abbreviations in the lexicon into two distinct categories, \title abbre-
viations" such as Mr. and Dr. which almost never occur at the end of a
sentence, and all other abbreviations. This new classi�cation, however, sig-
ni�cantly increased the training time and eliminated only 12 of the 409 errors
(2.9%).

The third and fourth items demonstrate the di�culty of distinguishing
subsentences within a sentence. This problem may be addressed by creating
a new classi�cation for punctuation marks, the \embedded end-of-sentence,"
as discussed in section 1.1. The �fth class of error may similarly be addressed
by creating a new classi�cation for ellipses, and then attempting to determine
the role of the ellipses independent of the sentence boundaries.
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Lower Upper False False Not Were % Not Testing
Thresh Thresh Pos Neg Labeled Correct Labeled Error (%)

0.5 0.5 209 200 0 0 0.0 1.50
0.4 0.6 173 174 145 83 0.50 1.27
0.3 0.7 140 148 326 205 1.20 1.06
0.2 0.8 111 133 541 376 1.98 0.89
0.1 0.9 79 94 1021 785 3.74 0.63

Table 4: Results of varying the sensitivity thresholds (27,294 test cases,
t0 = t1 = 0:5, 6-context, 2 hidden units).

5.4 Thresholds

As described in Section 4.4.1, the output of the neural network is used to
determine the function of a punctuation mark based on its value relative
to two sensitivity thresholds, with outputs that fall between the thresholds
denoting that the function of the punctuation mark is still ambiguous. These
are shown in the \Not Labeled" column of table 4, which gives the results of
a systematic experiment with the sensitivity thresholds. As the thresholds
were moved from the initial values of 0:5 and 0:5, certain items which had
been classi�ed as \False Pos" or \False Neg" fell between the thresholds and
became \Not Labeled." At the same time, however, items which had been
correctly labeled also fell between the thresholds, and these are shown in
the \Were Correct" column16. There is thus a tradeo�: decreasing the error
percentage by adjusting the thresholds also decreases the percentage of cases
correctly labeled and increases the percentage of items left ambiguous.

5.5 Single-case texts

A major advantage of the SATZ approach to sentence segmentation is its
robustness. In contrast to many existing systems which depend on brittle
parameters such as capitalization or spacing, SATZ is able to adapt to texts
which are not well-formed, such as single-case texts. The two descriptor array
ags for capitalization, discussed in section 4.3, allow the system to include
capitalization information when it is available. When this information is

16Note that the number of items in the \Were Correct" column is a subset of those in
the \Not Labeled" column.
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Text Training Training Training Cross Testing
Type Time (sec) Epochs Error Error Error (%)

Lower-case 30 66 7.65 2.64 3.8%
Upper-case 40 192 6.33 3.46 2.6%

Table 5: Results on single-case texts (27,294 test cases, t0 = t1 = 0:5, 6-
context, 2 hidden units).

not available, the system is nevertheless able to adapt and produce a high
accuracy. To demonstrate this robustness, I converted the training, cross-
validation, and test texts used in previous testing to a lower-case-only format,
with no capital letters. After retraining the neural network with the lower-
case-only texts, the SATZ system was able to correctly disambiguate 96.2%
of the sentence boundaries. After converting the texts to an upper-case-only
format, with all capital letters, and retraining the network on the texts in
this format, the system was able to correctly label 97.4%17. These results
are summarized in table 5.

5.6 Lexicon size

The lexicon with which I obtained the results of the previous sections was
the complete lexicon (over 30,000 words) from the PARTS tagger. Such a
large lexicon with part-of-speech frequency data is not always available, so it
is important to understand the impact a more limited lexicon would have on
the accuracy of SATZ. I altered the size of the English lexicon used in training
and testing18, and obtained the results in table 6. These data demonstrate
that a larger lexicon provides faster training and a higher accuracy, although
the performance with the smaller lexica was still almost as accurate as before.

17The di�erence in results with upper-case and lower-case formats can probably be
attributed to the capitalization ags in the descriptor arrays.

18The abbreviations in the lexicon remained unchanged. Altering the list of abbrevia-
tions might be an interesting future experiment.
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Words in Training Training Cross Testing Testing
Lexicon Epochs Error Error Errors Error (%)

30,000 218 0.75 2.01 411 1.50%
5,000 372 0.50 1.75 483 1.75%
3,000 1056 0.05 1.30 551 2.00%

Table 6: Results of comparing lexicon size (27,294 test cases, t0 = t1 = 0:5,
6-context, 2 hidden units).

6 Adaptation to Some Other Languages

Since the disambiguation component of the sentence segmentation algorithm,
the neural network, is language independent, the SATZ system can be easily
adapted to some natural languages other than English. Adaptation to other
languages involves setting a few language-speci�c parameters, and obtaining
(or building) a small lexicon containing the necessary part-of-speech data. I
successfully adapted the SATZ system to German and French, and the results
are described below.

6.1 German

The German lexicon was built from a series of public-domain word lists ob-
tained from the Consortium for Lexical Research. The lists of German ad-
jectives, verbs, prepositions, articles, and abbreviations were converted to
the appropriate format described in Section 4.2.2. In the resulting lexicon
of 18,000 words, each word was assigned only the parts-of-speech for the
lists from which it came, with a frequency of 1 for each part-of-speech. The
lexicon contained 156 German abbreviations. The part-of-speech tags used
were identical to those from the English lexicon, and the descriptor array
mapping remained also unchanged. This lexicon was used in testing with
two separate corpora. The total time required to adapt SATZ to German,
including building the lexicon and constructing training texts, was less than
one day.
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6.1.1 German News Corpus

The German News Corpus was constructed from a series of public-domain
German articles distributed internationally by the University of Ulm. It
contained over 12,000 test cases from the months July-October 1994, with
a lower bound of 96.7%. I constructed a training text of 268 cases from
the corpus, as well as a cross-validation text of 150 cases. The training was
completed in 70 seconds and resulted in a rate of 99.0% correctly labeled
sentence boundaries in the corpus of 12,000 cases. Repeating the training
and testing with a lower-case-only format gave an accuracy rate of 99.3%.
This higher accuracy for the lower-case text might be a result of the German
capitalization rules, in which all nouns, not just proper nouns, are capitalized.
I performed the training (both mixed-case and lower-case) without altering
the heuristics described in section 4.2.3. Fine-tuning the probabilities for
unknown capitalized words in German may increase the mixed-case accuracy.

6.1.2 S�uddeutsche Zeitung Corpus

The S�uddeutsche Zeitung Corpus compiled at the University of Munich con-
sists of several megabytes of online texts from the German newspaper.19 I
constructed a training text of over 500 items from the S�uddeutsche Zeitung
Corpus, and a cross-validation text of over 250 items. Training was per-
formed in less than 5 minutes on a Next workstation20. When tested on the
September 1994 portion of the SZ corpus containing approximately 20,000
items, the SATZ system produced an accuracy comparable to21 those ob-
tained with Schicht's method described in Section 2.1.

6.2 French

The French lexicon was compiled from the part-of-speech data obtained by
running the PARC part-of-speech tagger (Cutting et al., 1991) on a portion

19All my work with the S�uddeutsche Zeitung Corpus was performed in collaboration
with Prof. Franz Guenthner and Gabriele Schicht of the Centrum f�ur Informations- und
Sprachverarbeitung at the University of Munich.

20The Next workstation is signi�cantly slower than the Hewlett Packard workstation
used in other tests, which accounts for the slower training time.

21Due to the large size of the corpus, it was impossible to obtain an exact accuracy
percentage, as this would involve manually checking the results.
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of the Canadian Hansards corpus.22 The lexicon consisted of less than 1000
words assigned parts-of-speech by the tagger, including 20 French abbrevia-
tions appended to the 200 English abbreviations available from the English
lexicon. The part-of-speech tags in the lexicon were di�erent from those used
in the English implementation, so the descriptor array mapping had to be
adjusted accordingly. Adapting SATZ to French was accomplished in 2 days.

A training text of 361 test cases was constructed from the Hansards cor-
pus, and a cross-validation text of 137 cases. The training was completed in
30 seconds and the trained network was used to label the sentence bound-
aries in a separate portion of the Hansards corpus containing 1546 punctu-
ation marks with a lower bound of 83.0%. The SATZ system produced an
accuracy of 99.0% on this text. Repeating the training and testing with a
lower-case-only format also gave an accuracy rate of 99.0%.

7 Conclusions and Future Directions

The SATZ system o�ers a robust, rapidly trainable alternative to existing
systems, which usually require extensive manual e�ort to develop and are
speci�cally tailored to a text genre or natural language. By using prior prob-
abilities of a word's part-of-speech to represent the context in which the
word appears, the system o�ers signi�cant savings in parameter estimation
and training time. Although the systems of Wasson and Riley (1989) report
slightly better error rates, the SATZ approach has the advantage of exibil-
ity for application to new text genres, small training sets (and thereby fast
training times), (relatively) small storage requirements, and little manual
e�ort.

The boundary labeler was designed to be easily portable to new natural
languages, assuming the accessibility of lexical part-of-speech frequency data
(which can be obtained by running a part-of-speech tagger over a corpus of
text, if it is not already available in the tagger itself). The success of applying
SATZ to German and French with limited lexica and the experiments in En-
glish lexicon size described in Section 5.6 indicate that the lexicon itself need
not be exhaustive. The heuristics used within the system to classify unknown
words can compensate for inadequacies in the lexicon, and these heuristics

22The lexicon and all French texts (training, cross-validation, and test) were constructed
by Marti Hearst at Xerox PARC.
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can be easily adjusted to improve performance with a new language. I am
currently working to adapt the SATZ system to additional languages, includ-
ing Dutch, Italian, and Spanish. Since these languages are very similar to
the three in which SATZ has already been implemented, it will be interesting
to investigate its e�ectiveness with languages having di�erent punctuation
systems, such as Chinese or Arabic.

While the results presented here indicate that the system in its current
incarnation gives good results, many variations remain to be tested. It would
be interesting to systematically investigate the e�ects of asymmetric context
sizes, varied part-of-speech categorizations, abbreviation classes, and larger
descriptor arrays. Although the neural network used in this system provides a
simple, trainable tool for disambiguation, it would be instructive to compare
its e�cacy to a similar system which uses more conventional NLP tools such
as Hidden Markov Models or decision trees.

In section 4.2.1 I discussed the representation of context and explained
the processing circularity which makes it impossible to obtain the parts-of-
speech from a tagger since the tagger requires the sentence boundaries. It
would be possible to use the sentence boundaries labeled by SATZ to then
use a tagger to obtain a single part-of-speech for each word. It would then
be interesting to see if this more exact part-of-speech data would improve
the accuracy of SATZ on the same text.

As discussed in section 1.1, there are several issues in sentence bound-
ary disambiguation I have not addressed, but the methods developed in the
SATZ system could be extended to such tasks. For example, di�erent types
of sentence boundaries, such as the \embedded end-of-sentence," could be
identi�ed in much the same manner, by including the necessary information
in the training text and by adding output nodes to the neural network. An-
other potential extension of the SATZ system and a further test of its ability
to adapt to new text types would be to train and run it on OCR'ed text,
perhaps to assist in distinguishing punctuation marks or letters.
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Appendix A - README to accompany soft-

ware version 1.0 of SATZ

This document gives information about the various parts of the SATZ

program. Any questions should be directed at dpalmer@cs.berkeley.edu

FILES (full descriptions in files themselves):

getpart.c looks up the token in the lexicon

lex.yy.c tokenization (created by lex)

netinput.c formats input to neural net

tagfile.c labels sentence boundaries in input file

train.c trains neural net

utilities.c utilities used by above modules

common.h all the #defines which can be altered for the program

trans.h mapping of part-of-speech tags to descriptor array slots

utilities.h function prototypes for utilities.c

weights.net trained weights for neural net (created by train.c)

tokenize.l tokenization file for use by lex

UNIX scripts: these scripts provide all the functionality for the

program. File names within the scripts can be changed at

will, as long as you know what you are doing. Just make sure

all the file names exist before running the script.

getfreqs: tokenizes file, looks up in lexicon (this script is good for

seeing if the lookup is working properly, but is not

really a part of SATZ itself

usage: getfreqs {input file}

trainnet: trains neural net

usage: trainnet {file with training text}

bound: labels boundaries in input file

usage: bound {file to label}

Dictionary files: all dictionaries, or more accurately "word lists",
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must contain lines in the following format in order to be readable:

word {tab} TAG1/freq1 {tab} TAG2/freq2 {tab} TAGn/freqn

example: fixed\tJJ/1\tVBD/12\tVBN/69

(Note: {tab} is \t)

Important: do NOT leave a tab at the end of the line!

abbrev.dict abbreviation dictionary

chars.dict list of necessary characters or char strings (essential)

endings.dict list of word endings (used to guess plurals, gerunds, etc.)

propnoun.dict list of proper nouns (optional)

words.dict main lexicon

So, to use SATZ properly, you need to do the following:

1) Prepare a training text, which should be an excerpt from the text

to be labeled, of about 300-500 sentences. All boundaries in

the training text must be labeled with the character sequence

</s>, or whatever sequence you use

2) Prepare a cross-validation text in the same manner.

It should be about 150-300 sentences, roughly half the size of

the training text. Make sure the script "trainnet" has the

name of this text.

3) Run "trainnet" on the training text. Training time varies, but

should be between 20 seconds and 5 minutes. You should see

the progress of the training on the screen. Net weights will

be stored in weights.net for use by "bound". It is always

possible that the net won't behave nicely, as neural nets are

sometimes prone to do with the backprop algorithm. If this

happens, you can try several things : modify the training text

and/or cross-validation text slightly, change the learning rate

(ETA in common.h) if the learning is oscillating

significantly, change BECOME_STABLE or STAY_STABLE in common.h

which determine length of training based on behavior of the

cross-validation text, or simply yell lots of obscenities at

the author.
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4) Run "bound" on your files. The output is sent to the file name

specified in the "bound" script, so you can change it

each time if you want. Just be careful not to overwrite

previously labeled text if you label more than one file.

For each new language SATZ is used with, you will need to adjust a

few language-specific things, in order to maximize performance:

1) Make sure the tagset properly maps into the descriptor array. This

is specified in the file "trans.h". Four of the slots in

the descriptor array are reserved and must stay the same

regardless of the mapping (assuming 20 elements in array):

element 0 miscellaneous/other

element 17 first character capitalized

element 18 capital letter after possible sentence end

element 19 possible end-of-sentence punctuation mark

2) Change several #define declaration in common.h, including

DESPERATION_LABEL - a rough estimate of unknown word distribution

HYPHEN_LABEL - distribution for unknown hyphenated words

PROPER_NOUN_FACTOR -

PROPER_NOUN_AFTER_DOT

3) Make sure you have a lexicon of words in that language with prior

part-of-speech frequencies in the format above. A list of

abbreviations and a list of proper nouns is optional. I use

a very small (200 items) abbreviation list and no proper

noun list and get good results. Just make sure the abbreviation

list includes the essential important ones (in English, Mr.,Dr.,

etc.) If you include these lists, make sure no members of the lists

are duplicated in two lists with conflicting pos labels. Also, a

list of the most frequently encountered word endings in the

language will probably improve performance, as this list is used

to guess unknown words based on their endings (plurals, gerunds, etc.).

The endings file *must* contain at least one entry in order for the
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program to function properly. (You can simply enter "zzzzzzz\tZ/1"

if you don't want this part to be used, or you could modify the

code to never access the endings file.)

4) The file chars.dict contains lots of standard characters encountered, so

you don't need to put them in the word-dictionary. The token

**end** is returned by the tokenizer as a flag for training and

testing, whenever it encounters the string </s> in the text.

I chose this string assuming it would never occur naturally in any

text. Feel free to change it, but make sure the string you choose

is included in the lexicon with the label ./2
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